
CS766 Project: Neural Image Compression∗

Megh Doshi
megh.doshi

Varun Sundar
vsundar4

Zachary Huemann
zhuemann

varun19299.github.io/implicit-image-compression

April 13, 2021

Implicit Neural Networks, being a continuous mapping, can serve as a compelling choice for representing a variety
of commonly encountered 2D and 3D signals. In this proposal, we specifically consider the task of image compression
via implicit networks. Unfortunately, owing to the over-parameterized nature of deep networks, a naive approach may
require more parameters than samples present in the original signal. Furthermore, the capacity of such networks often
saturates with increasing width or depth. We seek to explore two related directions: (a) efficiently increasing the
capacity of implicit MLPs to fit natural images, and (b) reducing the storage requirement of such networks through a
combination of structured hashing, quantization and entropy coding.

1 Introduction
A large proportion of recent success in a variety of computer vision (and graphics) problems has been attributed to
implicitly defined representations parameterized by neural networks (typically a MLP). These include works on novel
view-point rendering (Mildenhall et al., 2020; Martin-Brualla et al., 2020), image stabililization (Liu et al., 2021) and
view-consistent image generation (Schwarz et al., 2020; Chan et al., 2020). Such MLPs replace traditional grid-based
representations, and map low-dimensional coordinates to output quantities such as pixel intensities or densities. Their
inherent continuous and differentiable nature makes these representations a compelling choice. Additionally, in the
particular case of 3D points, such networks are often much more compact than grid-based representations. Following
Tancik et al. (2020), we shall refer to such neural networks as “coordinate MLPs”.

DCT / DWT

Threshold & 
Quantize

Redundancy 
RemovalEncode

(b) JPEG Pipeline

Prune & 
Quantize

Redundancy 
Removal

⋮

⋮

⋮

⋮

⋮

⋮ 𝑅
𝐺
𝐵

𝑥

𝑦

Encode

(c) Proposed Pipeline

⋮⋮

⋮⋮

⋮⋮

𝑅 𝐺 𝐵

𝑥 𝑦

(a) Coordinate MLP

Figure 1: Can coordinate MLPs efficiently represent 2D image signals? We propose to use a pipeline similar to
JPEG with two major differences: (a) instead of a discrete cosine or wavelet transform (DCT or DWT), we use a MLP
(b) we efficiently store the network’s weights as opposed to storing the corresponding DCT or DWT coefficients.

In this work, we examine if these benefits can be carried over to the simpler 2D case of images. We consider apply-
ing coordinate MLPs for the task of lossy image compression by mapping 2D grid-locations (x, y) ∈ [0, 1]2 to RGB
intensities. By fitting a MLP, we transfer the task of compressing a grid of pixels to compressing the corresponding

∗Mid-Term Report

1

https://varun19299.github.io/implicit-image-compression


(a) Flower_foveon (b) Big_building (c) Bridge

Figure 2: Test images from the Image Compression Suite, chosen to include images that are JPEG compressible to
varying extents. The Image Compression Benchmark offers both 8-bit and 16-bit—as well as linear and tone-mapped
variants of test images—so we prefer it over the standard Kodak dataset (Franzen, 1999) for developing our method.
However, when benchmarking the final method, we shall utilize the latter dataset.

network’s weights. The representation is no longer limited by the grid-resolution but by the underlying network ar-
chitecture. This however can be challenging since deep networks often have more parameters than data points itself.
However, a wide body of research addresses the efficient storage and inference of deep networks, although generally
targeted towards high-dimensional mapping tasks such as image classification.

Another challenge associated with coordinate MLPs is their diminishing increase in capacity with growing layer
width and depth. This makes representing signals which are densely sampled (large resolution) or with finer detail
difficult. Rebain et al. (2020) tackle this issue for the case of 3D points by decomposing the scene into soft Voronoi
diagrams and dedicating smaller networks for each part. For images, frequency domain and wavelet decompositions
are potential candidates to achieve similar workarounds. In summary, we focus on the following questions:

• Given a target image to fit, how can we train and efficiently store coordinate MLPs? Since image quality is usually
sacrificed for storage, we are interested in exploring the trade-off space for coordinate MLPs and comparing them
to conventionally used image compression algorithms such as JPEG.

• For a fixed number of network parameters, can image decomposition help overcome the diminishing returns of
naively scaling coordinate MLPs? Valuable insights could include understanding when such decompositions are
useful and the range of image resolutions that can be represented.

2 Methodology via Empirical Evaluation
As illustrated in Figure 1, our pipeline first fits a coordinate MLP to an image, either directly or indirectly via a synthesis
equation. We then prune and quantize this network, before storing its weights as a compressed sparse array. Although
represented sequentially, we may choose to perform some of these steps jointly with training, e.g. directly train sparse
MLPs instead of pruning post-training. Given the rich body of literature in training neural networks efficiently, we base
our design choices on empirical evaluation presented in this section.

2.1 Image Collection and Training Description
We use three 16-bit, uncompressed images from the Image Compresssion Benchmark1: flower foveon, big building

and bridge (Figure 2). In Figure 3, we present the results of JPEG compression on the three images. We train coor-
dinate MLPs for 10,000 gradient steps each, using the Adam optimizer (Loshchilov and Hutter, 2019) and MSE loss

1https://imagecompression.info

2



Figure 3: JPEG performance in terms of PSNR and storage space versus quality, evaluated on test images from
the Image Compression Benchmark. PSNR is computed between the 8-bit uncompressed image and the JPEG encoded
image. Storage space is the actual space on disk in kilobytes, encoded using the OpenCV library (Bradski, 2000).

as the objective. Where possible, we set the batch size equal to the total number of pixels—hence corresponding to
full-batch gradient descent. All our experiments are conducted on a NVIDIA GTX-1080 GPU with 8GB of VRAM.

2.2 Baseline Network
Network Architecture We compare two recently proposed architectures for enabling MLPs to better represent high-
frequency detail in low-dimensional problems: SIREN (Sitzmann et al., 2020) and Fourier Features (Tancik et al.,
2020). While SIREN uses sinusoidal activation functions with a particular weight initialization, Fourier Features—
abreviated here as FFNet—uses a random Fourier embeddings (Rahimi and Recht, 2008) to increase input dimensions
prior to a ReLU MLP. As seen in Figure 4, for a given number of parameters, SIREN significantly outperforms FFNet
in image fitting.

By considering the maximum PSNR (equivalently PSNR at quality 100) obtained by JPEG, we choose a SIREN
network with depth 8 (or 6 hidden layers) and width 128 as our baseline MLP. We also observe that the minimal
architecture that outperforms JPEG in PSNR can differ across images—a hidden layer width of 256 units is better suited
for the big building and bridge images. Table 1 summarises the architecture, performance and storage space for
the chosen baselines. The encoding time required per image is around 20 minutes (10,000 steps), while decoding time
is much smaller, around 30 milliseconds, all reported with a GPU device.

Table 1: Performance metrics of baseline SIREN networks, tabulated for all 3 test images. While we find a larger
hidden-width necessary for big building and bridge images, we instead intend to use a single architecture and make
it more sparse to match storage requirements. We also list the compression ratio(s) needed to match JPEG.

Image Architecture PSNR #Param Storage Compression
(width, depth) (in dB) (weights, bias) (in KB) (ratio req.)

Flower foveon 128, 8 42.7 99,843 390 6.5–39×
Big building 256, 8 40.9 396,291 1,548 11–80×
Bridge 256, 8 38.6 396,291 1,548 9.7–77×

2.3 Reducing Parameter Count
We compare four different techniques to reduce parameter count, viz., Small-Dense, Feathermap, RigL and Pruning.
Small-Dense involves reducing the hidden-layer width commensurately to achieve a target parameter count. Feathermap

3



Figure 4: SIREN and FFNet compared across various width, depth configurations. We find SIREN (Sitzmann
et al., 2020) to consistently outperform Fourier-Feature networks (FFNet, Tancik et al. (2020)) for all images and
configurations. Increasing width and depth consistently improves performance for SIREN and less so for FFNet, but
requires greater compression ratios. We set the map size of the random Fourier features as 256, with frequencies
sampled from N (0, σ = 16).

(a) Flower_foveon (b) Big_building (c) Bridge

Figure 5: Weight compression techniques evaluated on test images. We compare using a narrow hidden layer (aka
Small-Dense), structured hashing (Feathermap, Eban et al. (2020)), iterative pruning (Pruning, Zhu and Gupta (2018))
and dynamic-sparse training (RigL, Evci et al. (2020)). RigL outperforms all other approaches, especially at higher
sparsities. Interestingly we can cut up to 80% of the original weights while incurring just a moderate drop in PSNR.

is a recently proposed structured hashing technique that represents the entire weights and biases of the MLP by a
single matrix and then stores it via low-rank decomposition. Particularly, we find Feathermap to drastically hurt the
representation power of the underlying SIREN network. Pruning here refers to iterative pruning (Zhu and Gupta,
2018), where low-magnitude weights are gradually removed from a fully-connected MLP till the desired sparsity is
achieved. RigL (Evci et al., 2020) instead directly trains sparse networks from scratch, with periodic growth, pruning
and redistribution steps. Overall, we find RigL to be the best approach for lowering parameter-count without significant
PSNR loss (Figure 5).

Low bit-rate via extreme sparsity We qualitative illustrate the benefit of using sparse coordinate MLPs to achieve
compression. As before, we use RigL to directly train sparse networks, but at much higher sparsity rates: 90% and
95%, corresponding to a parameter count reduction of 10× and 20× respectively. By shifting to int8 quantization,
which reduces bits required by 4x and storing these weights in the Compressed Sparse Column (CSC) format, we can
evaluate the theoretical bit-rates. As seen in Figure 6, even at high compression ratios, our approach retains most of
the visual structure and does not suffer from block artefacts.

4



JP
EG

Ou
rs

Ratio: 40x, PSNR: 31.9 dB

Ratio: 40x, PSNR: 23.2 dB Ratio: 22x, PSNR: 21.4 dB

Ratio: 20x, PSNR: 25.5 dB

Ratio: 23x, PSNR: 22.3 dB

Ratio: 20x, PSNR: 28.8 dB

(a) Flower_foveon (b) Big_building (c) Bridge

Figure 6: Qualitative comparison of JPEG versus our method in the low bit-
rate regime. Unlike JPEG, the proposed approach does not lead to any block
artefacts under severe compression. Compression ratios for our method are esti-
mated, assuming weight reduction using RigL and int8 quantization—without
any entropy coding. Quantization produces a fixed compression of 4×, while
sparsity is used as a toggle to achieve the target bit-rates. Zoom in to see details.

4 6 8 10 12
Model Parameters (in 104)

36

38

40

42

44

PS
NR

 (i
n 

dB
)

Image Fit
Wavelet Fit

Figure 7: Wavelet decomposition
does not improve performance.
For a fair comparison, we use the
same overall parameter count in ei-
ther approach. At the parameter
counts considered, directly fitting
the image performs better.

2.4 Wavelet Fitting
We attempt to increase the representation capacity of coordinate MLPs via wavelet decomposition. We use the Daubechies-
3 wavelet to perform decompose an image and fit a MLP each to low-frequency and high-frequency components—both
jointly optimized from scratch. For RGB images, we predict low-frequency outputs in the YCbCr space and then sim-
ply upsample the chroma components. Unfortunately, this approach does not confer any benefit over directly fitting an
image (Figure 7).

2.5 Weight Quantization †

Training with half precision (float16) or with surrogate quantization modules that simulate int8 precision can reduce
the possible performance drop due to post-training quantization, while still maintaining full precision (float32) PSNR.
Amongst post-training quantization techniques, we shall consider k-means or centroid based clustering, range based
quantization and distribution based quantization. Han et al. (2015) finds that in the image-classification domain, fully-
connected layers can be represented with just 5-bits—although we expect more bits (6-8) required for the significantly
harder image-fitting problem. Yet another alternative is to use the SZ lossy algorithm (Di and Cappello, 2016), although
this can be harder to implement (lots of carefully crafted stages, not widely supported).

2.6 Entropy Coding †

Post pruning and quantization, we are left with a bunch of sparse matrices that need to be efficiently stored. We shall
use the Compressed Sparse Columns (CSC) format, which stores 2η(n ×m) +m + 1 numbers for a matrix of size
n×m and sparsity η. We note that since no pruning is performed on the bias vectors, these can be represented as dense
arrays. The stored matrices can now be compressed by a combination of common entropy coding techniques such as
huffman encoding, LZ77 or the more recent proposed ZStandard 3.

†This section includes preliminary observations and work currently in progress.
3http://facebook.github.io/zstd/

5



References
G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

E. Chan, M. Monteiro, P. Kellnhofer, J. Wu, and G. Wetzstein. pi-gan: Periodic implicit generative adversarial networks
for 3d-aware image synthesis. In arXiv, 2020.

S. Di and F. Cappello. Fast error-bounded lossy hpc data compression with sz. In 2016 ieee international parallel and
distributed processing symposium (ipdps), pages 730–739. IEEE, 2016.

E. Eban, Y. Movshovitz-Attias, H. Wu, M. Sandler, A. Poon, Y. Idelbayev, and M. A. Carreira-Perpinan. Structured
multi-hashing for model compression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

U. Evci, T. Gale, J. Menick, P. S. Castro, and E. Elsen. Rigging the lottery: Making all tickets winners. In Proceedings
of Machine Learning and Systems (ICML), July 2020.

R. Franzen. Kodak lossless true color image suite. 1999.

S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural networks with pruning, trained quan-
tization and huffman coding. In Proceedings of the International Conference on Learning Representations (ICLR),
April 2015.

Y.-L. Liu, W.-S. Lai, M.-H. Yang, Y.-Y. Chuang, and J.-B. Huang. Neural re-rendering for full-frame video stabilization.
In arXiv, 2021.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International Conference on Learning Repre-
sentations, April 2019.

R. Martin-Brualla, N. Radwan, M. S. Sajjadi, J. T. Barron, A. Dosovitskiy, and D. Duckworth. Nerf in the wild: Neural
radiance fields for unconstrained photo collections. 2020.

B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf: Representing scenes as
neural radiance fields for view synthesis. In Proceedings of the European Conference on Computer Vision (ECCV),
September 2020.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances in Neural Information Pro-
cessing Systems, December 2008.

D. Rebain, W. Jiang, S. Yazdani, K. Li, K. M. Yi, and A. Tagliasacchi. Derf: Decomposed radiance fields. 2020.

K. Schwarz, Y. Liao, M. Niemeyer, and A. Geiger. Graf: Generative radiance fields for 3d-aware image synthesis. In
Advances in Neural Information Processing Systems (NeurIPS), 2020.

V. Sitzmann, J. N. Martel, A. W. Bergman, D. B. Lindell, and G. Wetzstein. Implicit neural representations with
periodic activation functions. 2020.

M. Tancik, P. P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ramamoorthi, J. T. Barron,
and R. Ng. Fourier features let networks learn high frequency functions in low dimensional domains. 2020.

M. Zhu and S. Gupta. To prune, or not to prune: Exploring the efficacy of pruning for model compression. In
Proceedings of the International Conference on Learning Representations (ICLR), April 2018.

6


	Introduction
	Methodology via Empirical Evaluation
	Image Collection and Training Description
	Baseline Network
	Reducing Parameter Count
	Wavelet Fitting
	Weight Quantization This section includes preliminary observations and work currently in progress.
	Entropy Coding preliminary-work†preliminary-work


