sparselearning.tests¶
sparselearning.tests.test_data¶
- Try testing salient dataset features:
Is it downloaded?
Does the loader work
Does the loader have data in your desired format?
-
sparselearning.tests.test_data.
test_get_loaders
(dataset)¶ Test dataloader
- Parameters
dataset (str) – Dataset to use
-
sparselearning.tests.test_data.
test_registry
(dataset)¶ Test get_dataset functions
- Parameters
dataset (str) – Dataset to use
-
sparselearning.tests.test_data.
test_splitter
()¶ Test data splitting using DatasetSplitter
sparselearning.tests.test_mask_loading_saving¶
-
sparselearning.tests.test_mask_loading_saving.
test_save_load
()¶ Initialise
Save
- Load
Assert if equal
Perform optim step
sparselearning.tests.test_struct_sparse¶
-
sparselearning.tests.test_struct_sparse.
is_channel_sparse
(mask: sparselearning.core.Masking) → bool¶ Checks if the conv mask is channel-wise sparse.
- Parameters
mask (Masking) – Masking instance
- Returns
True if channel-wise sparse
- Return type
bool
-
sparselearning.tests.test_struct_sparse.
test_struct_init
(init_scheme: str)¶ Test structured sparsity for various init schemes
- Parameters
init_scheme (str) – Random/ER/ERK
-
sparselearning.tests.test_struct_sparse.
test_struct_prune_growth
(prune_mode, growth_mode)¶ Test structured sparsity across prune, growth modes. See sparselearning.funcs.prune,growth
- Parameters
prune_mode (str) – prune mode
growth_mode (str) – growth mode