SparseLearning
User Documentation:
Getting Started
Example Code
Main Results
Code Structure
References
API Documentation:
sparselearning package
visualization package
models package
SparseLearning
»
Index
Index
A
|
B
|
C
|
D
|
E
|
F
|
G
|
I
|
K
|
L
|
M
|
N
|
P
|
R
|
S
|
T
|
U
|
V
|
W
|
Z
A
abs_grad_growth() (in module sparselearning.funcs.grow)
accuracy_vs_FLOPs() (in module visualization.erk_vs_random_FLOPs)
activation (sparselearning.counting.micronet_challenge.Conv2D attribute)
(sparselearning.counting.micronet_challenge.DepthWiseConv2D attribute)
(sparselearning.counting.micronet_challenge.FullyConnected attribute)
Add (class in sparselearning.counting.micronet_challenge)
add_module() (sparselearning.core.Masking method)
add_value() (sparselearning.utils.smoothen_value.AverageValue method)
(sparselearning.utils.smoothen_value.SmoothenValue method)
adjust_prune_rate() (sparselearning.core.Masking method)
align_and_update_state_dicts() (in module sparselearning.utils.model_serialization)
alpha_deltaT_plot() (in module visualization.alpha_deltaT)
apply_mask() (sparselearning.core.Masking method)
apply_mask_gradients() (sparselearning.core.Masking method)
AverageValue (class in sparselearning.utils.smoothen_value)
avg_inference_FLOPs() (sparselearning.core.Masking property)
B
BasicBlock (class in models.resnet)
(class in models.wide_resnet)
beta (sparselearning.utils.smoothen_value.SmoothenValue attribute)
BottleNeck (class in models.resnet)
C
calc_redistributed_densities() (sparselearning.core.Masking method)
cifar100plots() (in module visualization.main_plots)
cifar10plots() (in module visualization.main_plots)
Conv2D (class in sparselearning.counting.micronet_challenge)
CosineDecay (class in sparselearning.funcs.decay)
count_ops() (in module sparselearning.counting.micronet_challenge)
create_plot_from_spec() (in module visualization.main_plots)
cumulative_sparsity() (sparselearning.funcs.decay.MagnitudePruneDecay method)
D
Decay (class in sparselearning.funcs.decay)
dense_FLOPs() (sparselearning.core.Masking property)
dense_gradients (sparselearning.core.Masking attribute)
density (sparselearning.core.Masking attribute)
DepthWiseConv2D (class in sparselearning.counting.micronet_challenge)
E
emit() (sparselearning.utils.tqdm_logging.TqdmLoggingHandler method)
erdos_renyi_init() (in module sparselearning.funcs.init_scheme)
expansion (models.resnet.BasicBlock attribute)
(models.resnet.BottleNeck attribute)
F
final_sparsity (sparselearning.funcs.decay.MagnitudePruneDecay attribute)
FLOPs_vs_sparsity() (in module visualization.erk_vs_random_FLOPs)
forward() (models.resnet.BasicBlock method)
(models.resnet.BottleNeck method)
(models.resnet.ResNet method)
(models.wide_resnet.BasicBlock method)
(models.wide_resnet.NetworkBlock method)
(models.wide_resnet.WideResNet method)
FullyConnected (class in sparselearning.counting.micronet_challenge)
G
gather_statistics() (sparselearning.core.Masking method)
get_conv_output_size() (in module sparselearning.counting.micronet_challenge)
get_dr() (sparselearning.funcs.decay.CosineDecay method)
(sparselearning.funcs.decay.Decay method)
(sparselearning.funcs.decay.LinearDecay method)
(sparselearning.funcs.decay.MagnitudePruneDecay method)
get_erdos_renyi_dist() (in module sparselearning.funcs.init_scheme)
get_flops_per_activation() (in module sparselearning.counting.micronet_challenge)
get_inference_FLOPs() (in module sparselearning.counting.ops)
get_info() (in module sparselearning.counting.micronet_challenge)
get_lr() (sparselearning.utils.warmup_scheduler.WarmUpLR method)
get_momentum_for_weight() (sparselearning.core.Masking method)
get_optimizer() (in module sparselearning.utils.train_helper)
get_pre_activations_dict() (in module sparselearning.counting.helper)
get_sparse_size() (in module sparselearning.counting.micronet_challenge)
get_stats() (in module visualization.alpha_deltaT)
(in module visualization.lr_tuning)
get_stats_table() (in module visualization.main_results)
get_topk_accuracy() (in module sparselearning.utils.accuracy_helper)
global_magnitude_prune() (in module sparselearning.funcs.prune)
global_prune() (sparselearning.core.Masking property)
GlobalAvg (class in sparselearning.counting.micronet_challenge)
grad_redistribution() (in module sparselearning.funcs.redistribute)
growth_func() (sparselearning.core.Masking property)
growth_increment (sparselearning.core.Masking attribute)
growth_mode (sparselearning.core.Masking attribute)
growth_threshold (sparselearning.core.Masking attribute)
I
increment (sparselearning.core.Masking attribute)
inference_FLOPs() (sparselearning.core.Masking property)
init() (sparselearning.core.Masking method)
initial_sparsity (sparselearning.funcs.decay.MagnitudePruneDecay attribute)
input_size (sparselearning.counting.micronet_challenge.Add attribute)
(sparselearning.counting.micronet_challenge.Conv2D attribute)
(sparselearning.counting.micronet_challenge.DepthWiseConv2D attribute)
(sparselearning.counting.micronet_challenge.GlobalAvg attribute)
(sparselearning.counting.micronet_challenge.Scale attribute)
interval (sparselearning.funcs.decay.MagnitudePruneDecay attribute)
is_channel_sparse() (in module sparselearning.tests.test_struct_sparse)
K
kernel_shape (sparselearning.counting.micronet_challenge.Conv2D attribute)
(sparselearning.counting.micronet_challenge.DepthWiseConv2D attribute)
(sparselearning.counting.micronet_challenge.FullyConnected attribute)
L
LayerStats (class in sparselearning.core)
LinearDecay (class in sparselearning.funcs.decay)
load_state_dict() (in module sparselearning.utils.model_serialization)
(sparselearning.core.LayerStats method)
(sparselearning.core.Masking method)
load_weights() (in module sparselearning.utils.train_helper)
lottery_ticket_init() (in module sparselearning.funcs.init_scheme)
lr_tuning_plot() (in module visualization.lr_tuning)
M
magnitude_prune() (in module sparselearning.funcs.prune)
MagnitudePruneDecay (class in sparselearning.funcs.decay)
main() (in module visualization.alpha_deltaT)
(in module visualization.lr_tuning)
(in module visualization.main_plots)
(in module visualization.main_results)
(in module visualization.redist_inference_plot)
mask_step (sparselearning.core.Masking attribute)
Masking (class in sparselearning.core)
MicroNetCounter (class in sparselearning.counting.micronet_challenge)
model_inference_FLOPs() (in module sparselearning.counting.inference_train_FLOPs)
models.resnet
module
models.wide_resnet
module
module
models.resnet
models.wide_resnet
sparselearning.core
sparselearning.counting.helper
sparselearning.counting.inference_train_FLOPs
sparselearning.counting.micronet_challenge
sparselearning.counting.ops
sparselearning.counting.print_stats
sparselearning.funcs.decay
sparselearning.funcs.grow
sparselearning.funcs.init_scheme
sparselearning.funcs.prune
sparselearning.funcs.redistribute
sparselearning.tests.test_data
sparselearning.tests.test_mask_loading_saving
sparselearning.tests.test_struct_sparse
sparselearning.utils.accuracy_helper
sparselearning.utils.layer_wise_density
sparselearning.utils.model_serialization
sparselearning.utils.ops
sparselearning.utils.smoothen_value
sparselearning.utils.tqdm_logging
sparselearning.utils.train_helper
sparselearning.utils.warmup_scheduler
visualization.alpha_deltaT
visualization.density_distribution
visualization.erk_vs_random_FLOPs
visualization.lr_tuning
visualization.main_plots
visualization.main_results
visualization.redist_inference_plot
module (sparselearning.core.Masking attribute)
momentum_growth() (in module sparselearning.funcs.grow)
momentum_redistribution() (in module sparselearning.funcs.redistribute)
N
n (sparselearning.utils.smoothen_value.AverageValue attribute)
(sparselearning.utils.smoothen_value.SmoothenValue attribute)
n_channels (sparselearning.counting.micronet_challenge.Add attribute)
(sparselearning.counting.micronet_challenge.GlobalAvg attribute)
(sparselearning.counting.micronet_challenge.Scale attribute)
NetworkBlock (class in models.wide_resnet)
no_growth() (in module sparselearning.funcs.grow)
nonzero_redistribution() (in module sparselearning.funcs.redistribute)
nonzeros_dict (sparselearning.core.LayerStats attribute)
P
padding (sparselearning.counting.micronet_challenge.Conv2D attribute)
(sparselearning.counting.micronet_challenge.DepthWiseConv2D attribute)
plot() (in module sparselearning.utils.layer_wise_density)
plot_as_image() (in module sparselearning.utils.layer_wise_density)
plot_col_vs_density() (in module visualization.main_plots)
plot_method() (in module visualization.main_plots)
print_nonzero_counts() (sparselearning.core.Masking method)
print_stats() (in module sparselearning.counting.print_stats)
print_summary() (sparselearning.counting.micronet_challenge.MicroNetCounter method)
process_counts() (sparselearning.counting.micronet_challenge.MicroNetCounter method)
prune_func() (sparselearning.core.Masking property)
prune_mode (sparselearning.core.Masking attribute)
prune_rate() (sparselearning.core.Masking property)
prune_threshold (sparselearning.core.Masking attribute)
Pruning_inference_FLOPs() (in module sparselearning.counting.inference_train_FLOPs)
Pruning_train_FLOPs() (in module sparselearning.counting.inference_train_FLOPs)
R
random_growth() (in module sparselearning.funcs.grow)
random_init() (in module sparselearning.funcs.init_scheme)
random_perm() (in module sparselearning.utils.ops)
redistribution_func() (sparselearning.core.Masking property)
redistribution_mode (sparselearning.core.Masking attribute)
remove_type() (sparselearning.core.Masking method)
remove_weight() (sparselearning.core.Masking method)
remove_weight_partial_name() (sparselearning.core.Masking method)
removed_dict (sparselearning.core.LayerStats attribute)
reset_momentum() (sparselearning.core.Masking method)
ResNet (class in models.resnet)
resnet101() (in module models.resnet)
resnet152() (in module models.resnet)
resnet18() (in module models.resnet)
resnet34() (in module models.resnet)
resnet50() (in module models.resnet)
resnet50_FLOPs() (in module sparselearning.counting.inference_train_FLOPs)
resume_init() (in module sparselearning.funcs.init_scheme)
RigL_train_FLOPs() (in module sparselearning.counting.inference_train_FLOPs)
S
save_weights() (in module sparselearning.utils.train_helper)
Scale (class in sparselearning.counting.micronet_challenge)
SET_train_FLOPs() (in module sparselearning.counting.inference_train_FLOPs)
SmoothenValue (class in sparselearning.utils.smoothen_value)
SNFS_train_FLOPs() (in module sparselearning.counting.inference_train_FLOPs)
sparse_init (sparselearning.core.Masking attribute)
sparselearning.core
module
sparselearning.counting.helper
module
sparselearning.counting.inference_train_FLOPs
module
sparselearning.counting.micronet_challenge
module
sparselearning.counting.ops
module
sparselearning.counting.print_stats
module
sparselearning.funcs.decay
module
sparselearning.funcs.grow
module
sparselearning.funcs.init_scheme
module
sparselearning.funcs.prune
module
sparselearning.funcs.redistribute
module
sparselearning.tests.test_data
module
sparselearning.tests.test_mask_loading_saving
module
sparselearning.tests.test_struct_sparse
module
sparselearning.utils.accuracy_helper
module
sparselearning.utils.layer_wise_density
module
sparselearning.utils.model_serialization
module
sparselearning.utils.ops
module
sparselearning.utils.smoothen_value
module
sparselearning.utils.tqdm_logging
module
sparselearning.utils.train_helper
module
sparselearning.utils.warmup_scheduler
module
sparsify() (sparselearning.core.Masking method)
state_dict() (sparselearning.core.LayerStats method)
(sparselearning.core.Masking method)
step() (sparselearning.core.Masking method)
(sparselearning.funcs.decay.CosineDecay method)
(sparselearning.funcs.decay.Decay method)
(sparselearning.funcs.decay.LinearDecay method)
(sparselearning.funcs.decay.MagnitudePruneDecay method)
strides (sparselearning.counting.micronet_challenge.Conv2D attribute)
(sparselearning.counting.micronet_challenge.DepthWiseConv2D attribute)
strip_prefix_if_present() (in module sparselearning.utils.model_serialization)
struct_abs_grad_growth() (in module sparselearning.funcs.grow)
struct_erdos_renyi_init() (in module sparselearning.funcs.init_scheme)
struct_magnitude_prune() (in module sparselearning.funcs.prune)
struct_random_init() (in module sparselearning.funcs.init_scheme)
T
T_max (sparselearning.funcs.decay.MagnitudePruneDecay attribute)
T_start (sparselearning.funcs.decay.MagnitudePruneDecay attribute)
test_get_loaders() (in module sparselearning.tests.test_data)
test_registry() (in module sparselearning.tests.test_data)
test_save_load() (in module sparselearning.tests.test_mask_loading_saving)
test_splitter() (in module sparselearning.tests.test_data)
test_struct_init() (in module sparselearning.tests.test_struct_sparse)
test_struct_prune_growth() (in module sparselearning.tests.test_struct_sparse)
to_module_device_() (sparselearning.core.Masking method)
tolerance (sparselearning.core.Masking attribute)
total_density() (sparselearning.core.LayerStats property)
total_nonzero (sparselearning.core.LayerStats attribute)
total_removed (sparselearning.core.LayerStats attribute)
total_variance (sparselearning.core.LayerStats attribute)
total_zero (sparselearning.core.LayerStats attribute)
TqdmLoggingHandler (class in sparselearning.utils.tqdm_logging)
training (models.resnet.BasicBlock attribute)
(models.resnet.BottleNeck attribute)
(models.resnet.ResNet attribute)
(models.wide_resnet.BasicBlock attribute)
(models.wide_resnet.NetworkBlock attribute)
(models.wide_resnet.WideResNet attribute)
truncate_weights() (sparselearning.core.Masking method)
U
update_connections() (sparselearning.core.Masking method)
use_bias (sparselearning.counting.micronet_challenge.Conv2D attribute)
(sparselearning.counting.micronet_challenge.DepthWiseConv2D attribute)
(sparselearning.counting.micronet_challenge.FullyConnected attribute)
V
variance_dict (sparselearning.core.LayerStats attribute)
visualization.alpha_deltaT
module
visualization.density_distribution
module
visualization.erk_vs_random_FLOPs
module
visualization.lr_tuning
module
visualization.main_plots
module
visualization.main_results
module
visualization.redist_inference_plot
module
W
wandb_bar() (in module sparselearning.utils.layer_wise_density)
WarmUpLR (class in sparselearning.utils.warmup_scheduler)
WideResNet (class in models.wide_resnet)
wrn_22_2_FLOPs() (in module sparselearning.counting.inference_train_FLOPs)
Z
zeros_dict (sparselearning.core.LayerStats attribute)